Antibiotics Residues in Honey: Regulations and Methods of Analysis Results, Conclusion and Outlook

Dr. Kurt-Peter Raezke PHD in Chemistry and General Manager of APPLICA GmbH - Applied Analytical Chemistry Bremen, Germany

APPLICA GMBH Applied Analytical Chemistry Am Becketal 14 D-28755 Bremen, Germany

Phone: ++49-421-65 72 71 Fax: ++49-421-65 72 72 22 E-mail: info@applica-analytik.de Internet: www.applica-analytik.de

Contents

- Company Profile of APPLICA GmbH, Bremen, Germany
 - the laboratory for applied analytical chemistry specialised in honey and honey products
- Residues in Honey
 - Rules and Regulations
- Residues Analysis on the example of Nitrofurane Metabolites
 History, Regulation, Method of Analysis, and Results
- Residues Analysis on the example of Tylosin
- Proposals, Key Issues, and Action to be Taken
- Conclusion and Outlook

Company Profile of APPLICA

APPLICA is a highly specialised laboratory in the field of honey and honey products.

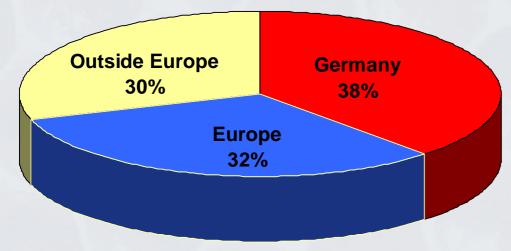
We are accredited as a testing laboratory in compliance with DIN EN ISO/IEC 17025, the internationally applied standard.

We operate worldwide on the basis of our

innovative analytical methods, the latest technology and state-of-the-art equipment.

This has made us one of the world's leading laboratories for honey analyses.

And APPLICA is maintaining and expanding its position even further by developing new methods and refining existing ones, by training its staff according to market needs, as well as by its various activities in research and development.


Roaming the vast field of honey analyses

Honey as a natural product is subject to especially strict regulations and controls. Our special analytical methods enable us to prove e.g. which

- Production and site conditions were available;
- Substances are contained in the product in detail;
- Prohibited and undesirable substances are present;
- Veterinary drugs have been used.

Piele CT succes

APPLICA has customers all over the world:

Residues in Honey

Regulations

2377/90/EC

2002/657/EC

2003/181/EC

... laying down a Community procedure for the establishment of Maximum Residue Limits (MRLs) of veterinary medicinal products in foodstuffs of animal origin

... concerning the performance of analytical methods and the interpretation of results

... the setting of **Minimum Required Performance Limits (MRPLs)** for certain residues in food of animal origin

CFI - International Seminar in Rafaela, Argentina - September/October 2004

Slide No. 5 of 36

Residues in Honey

2377/90/EC

... laying down a Community procedure for the establishment of Maximum Residue Limits (MRLs) of veterinary medicinal products in foodstuffs of animal origin

Annex I

List of pharmacologically active substances used in veterinary medicinal products in respect of which maximum residue limits have been established

Annex II

List of pharmacologically active substances used in veterinary medicinal products for which it is not necessary for the protection of public health to establish a maximum residue limit

Annex III

List of pharmacologically active substances used in veterinary medicinal products in respect of which provisional maximum residue limits have been established

Annex IV

List of pharmacologically active substances which shall be prohibited throughout the Community for use in food-producing animals

Residues in Honey

... concerning the

2002/657/EC

performance of analytical methods and the interpretation of results

It is necessary to ensure the quality and comparability of the analytical results generated by laboratories approved for official residue control.

This should be achieved by using quality assurance systems and specifically by applying of methods validated according to common procedures and performance criteria ...

It is necessary to determine common criteria for the interpretation of the test results ...

It is necessary to provide for the progressive establishment of Minimum Required Performance Limits (MRPLs) of analytical methods for substances for which no permitted limit has been established ...

Residues in Honey

2003/181/EC

... the setting of Minimum Required Performance Limits (MRPLs) for certain residues in food of animal origin

Chloramphenicol *Nitrofurane Metabolites* Honey (Honey) 0.3 μg/kg *1.0 μg/kg*

Residues in Honey

Methods:

Reproducibility Sy Linearity Limit of Quantification Limit of Detection Repeatability

Sample Preparation System Performance

Laboratories:

Competence and Experience Quality Control Technical Equipment

Determination of Veterinary Drugs in Honey

Analyte/s	Method	Confirmation Method	MRL MRPL	Limit of Detection
Amitraze	GC-MS		200 µg/kg	10 µg/kg
Chloramphenicol	ELISA Charm II Biocore Q	LC-MS/MS GC-MS	0.3 µg/kg	0.1 µg/kg
Coumaphos	LC-MS/MS GC-MS		100 µg/kg	0.1 µg/kg
Erythromycin	LC-MS/MS GC-MS		1398510	1 µg/kg
Fluvalinates	LC-MS/MS GC-MS			2 µg/kg
Nitrofurane Metabolites	LC-MS/MS		0.5 µg/kg	0.2 µg/kg
Streptomycin	LC-FLD Charm II ELISA	LC-MS/MS		5 µg/kg
Sulfonamides	LC-UV/FLD Charm II Biocore Q	LC-MS/MS		5 µg/kg
Tetracyclines	LC-UV Charm II	LC-MS/MS		5 µg/kg
Tylosin	LC-MS/MS			1 µg/kg

Determination of Nitrofurane Metabolites

in Honey

History, Regulation, Method of Analysis, and Results

Regulation

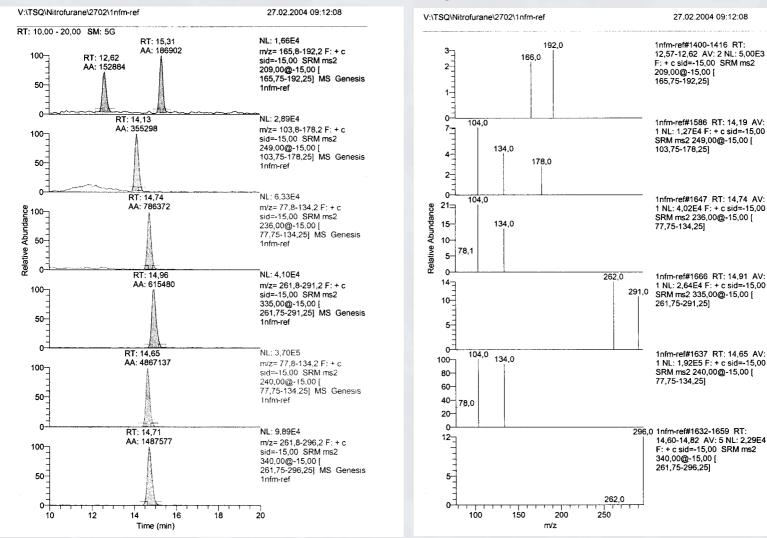
Annex IV

List of pharmacologically active substances which shall be prohibited throughout the Community for use in food-producing animals

History					
2002	At first, "no information to the public" was necessary on Nitrofuranes in food acc. to the German authorities				
	Later this statement was altered regarding chicken and shrimps to "imports have to be tested for nitrofurane residues"				
	Methods for determining N being developed as: No tes substances were available				
2003	Reference substances were found and an LC-MS/MS method for honey was developed with the following limit values:				
	Limit of Quantification: Limit of Detection:	1.0 µg/kg 0.5 µg/kg			
	Nitrofurane Metabolites testing in honey then became routine. The analytical method was revalidated to:				
	Limit of Quantification: Limit of Detection:				
2004	Fine-tuning of the method with honeys of different or	based on the experience made igins.			

Method of Analysis

Sample Preparation


1.0 (\pm 0.05) g of homogenised honey 50 μL Internal Standard (5 μg/kg) d4-AOZ / d5-AMOZ 5 mL of 0.1 M hydrochloric acid **0.1 mL of 2-nitrobenzaldehyde** (0.05 M in methanol) Incubation overnight (16 h minimum) at 37 °C Neutralization with 0.42 mL of 1 M sodium hydroxide Extraction with 5 mL of ethyl acetate Evaporation to dryness with a nitrogen stream Reconstitution with 0.5 mL of water/methanol (9/1)

Method of Analysis

System - Thermo Electron LC-MS/MS Quantum Discovery

Sep Elue		Phenomenex Synergi Polar-RP 125 x 2,0 mm ID; 4 μ m Gradient Water / Methanol (0.01 % H ₃ C-COOH)				
	Volume: Time:	20 µL 30 min	Flow:	0.2 mL/min		
loniz Flov	zation mode:	ESI positive 55 Arb	Spray Voltage: Capillary Temp.:	5000 VNitrogen 300 °C		
	ision Energy:	15 V	Capillary Temp.	000 0		
Mass	s (SRM)	TSQ Parent	MS/MS-Pro	oduct		
Mass	SEM	Parent 209 (M-H)+	166 / 192			
Mass	SEM AHD	Parent 209 (M-H) ⁺ 249 (M-H) ⁺	166 / 192 104 / 134 /	178		
Mass	SEM AHD AOZ	Parent 209 (M-H) ⁺ 249 (M-H) ⁺ 236 (M-H) ⁺	166 / 192 104 / 134 / 78 / 104 /	178		
Mass	SEM AHD AOZ AMOZ	Parent 209 (M-H)+ 249 (M-H)+ 236 (M-H)+ 335 (M-H)+	166 / 192 104 / 134 / 78 / 104 / 262 / 291	178 134		
Mass	SEM AHD AOZ	Parent 209 (M-H) ⁺ 249 (M-H) ⁺ 236 (M-H) ⁺	166 / 192 104 / 134 / 78 / 104 /	178 134		

Nitrofurane Metabolites in Honey

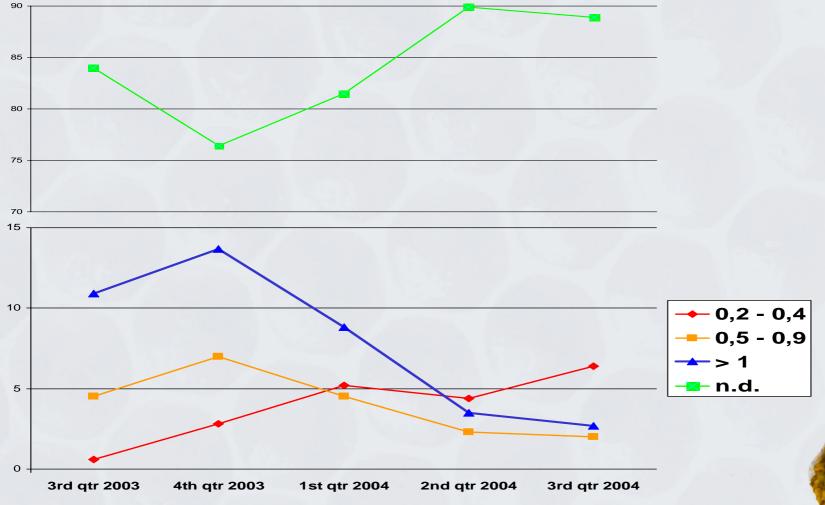
CFI - International Seminar in Rafaela, Argentina - September/October 2004

Slide No. 15 of 36

Quantification of Nitrofurane Metabolites in Honey

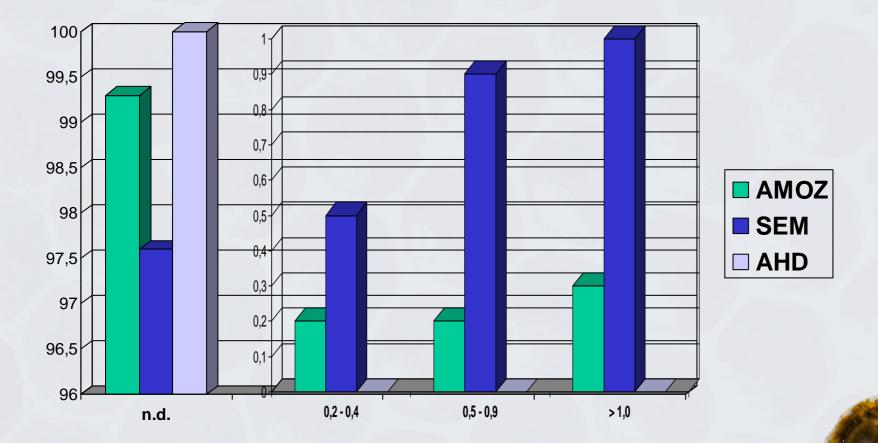
Reference: 1 µg/kg each

	SEM		AHD		AOZ		AMOZ	
	TSQ	LCQ	TSQ	LCQ	TSQ	LCQ	TSQ	LCQ
Variation Coefficient	3.22 %	8.98 %	6.53 %	10.83 %	3.24 %	3.52 %	3.63 %	7.88 %
Repeatability	0.09 µg/kg	0.25 µg/kg	0.18 µg/kg	0.31 µg/kg	0.09 µg/kg	0.10 µg/kg	0.10 µg/kg	0.22 µg/kg
Confidence	0.03 µg/kg	0.09 µg/kg	0.07 µg/kg	0.11 µg/kg	0.03 µg/kg	0.04 µg/kg	0.04 µg/kg	0.08 µg/kg


Quantification of Nitrofurane Metabolites in Honey

Contaminated Honey Samples

	A	ΟZ	AOZ		
	TSQ	LCQ	TSQ	LCQ	
Concentration	0.54	0.47	1.51	1.39	
	µg/kg	µg/kg	µg/kg	µg/kg	
Variation Coefficient	10.15 %	14.25 %	3.24 %	13.30 %	
Repeatability	0.15	0.19	0.14	0.52	
	µg/kg	µg/kg	µg/kg	µg/kg	
Confidence	0.06	0.07	0.05	0.19	
	µg/kg	µg/kg	µg/kg	µg/kg	


Nitrofurane Metabolites in Honey - RESULTS

July 2003 to September 2004 - AOZ

Nitrofurane Metabolites in Honey - RESULTS

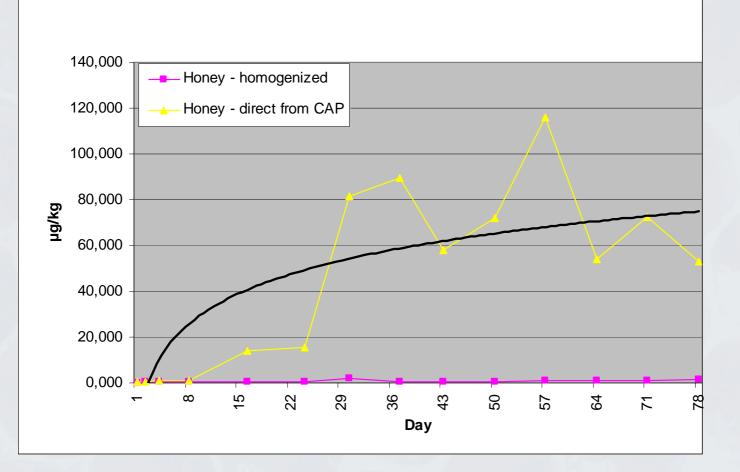
July 2003 to September 2004 - AMOZ / SEM / AHD

PLICA

Migration of Semicarbazide

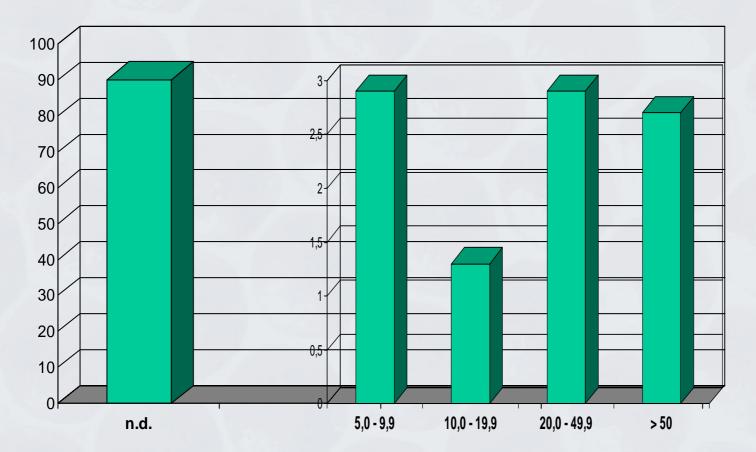
2004/1/EC

... as regards the suspension of the use of azodicarbonamide as blowing agent


(2)

Azodicarbonamide is used as blowing agent in the manufacture of plastic gaskets in metal lids used for the closure of glass jars. New findings have shown that azodicarbonamide decomposes into semicarbazide (SEM) when heated during production of the foamed gasket and during sterilisation of the sealed glass jar.

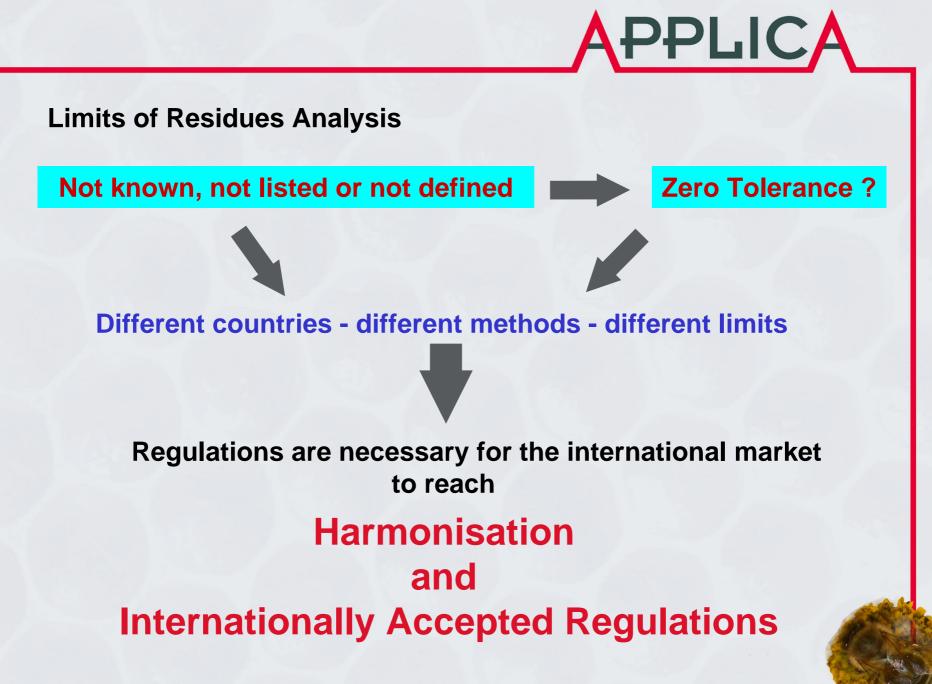
Article 1


For use only as blowing agent. Use prohibited as from 2 August 2005.

Migration of Semicarbazide

Residues Analysis on the example of:

Tylosin



Proposals,

Key Issues, and

Action to be Taken

CFI - International Seminar in Rafaela, Argentina - September/October 2004

Slide No. 24 of 36

Cooperation between Laboratories: Sulfochloropyridazine

Charm II - positive

Confirmation with LC for known sulfonamides

negative

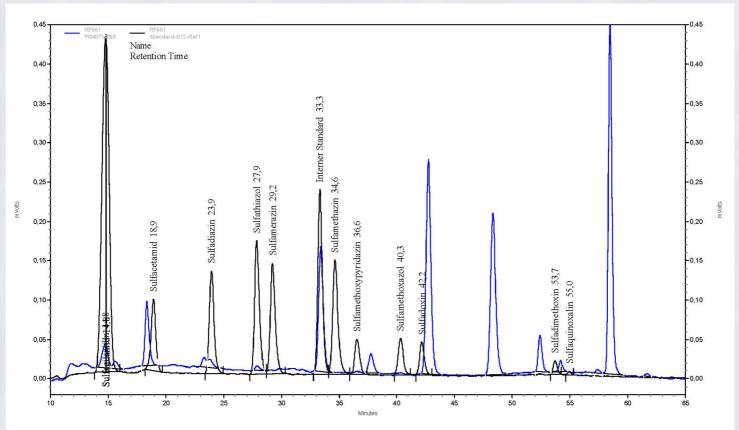
Wrong positive ???

Sulfonamides - Comparison of HPLC and Charm II Results

Sample	Origin	Sulfonamide (H [µg/kg]	IPLC)	Charm II [cpm] *	Controls (Charm II) **	
1	Bulgaria	-	-	5704	(+) 1440	
2		-	-	5331	() 5499	
2 3		-	-	5687		
4	п	-	-	5368		
5		Sulfathiazole	26	2317		
6		Sulfathiazole	26	1726		
7	Argentina	Sulfamethazine	17	957	(+) 1675	
8		Sulfamethazine	24	859	() 5146	
8 9		Sulfamethazine	65	653		
10		-	-	3779		
11		-	-	5841		
12		-	-	6533		
13	u	-	-	5166		
-						
14	Mexico	-	-	4002	(+) 1494	
15		-	-	4779	() 4406	
16		Sulfathiazole	6	5041		
17	"	Sulfamethazine	7	5540		

* cpm = counts per minute

* (+) = positive control: negative honey spiked at 10 μ g/kg sulfamethazine (SMZ)

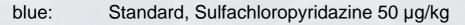

(--) = negative control: negative honey

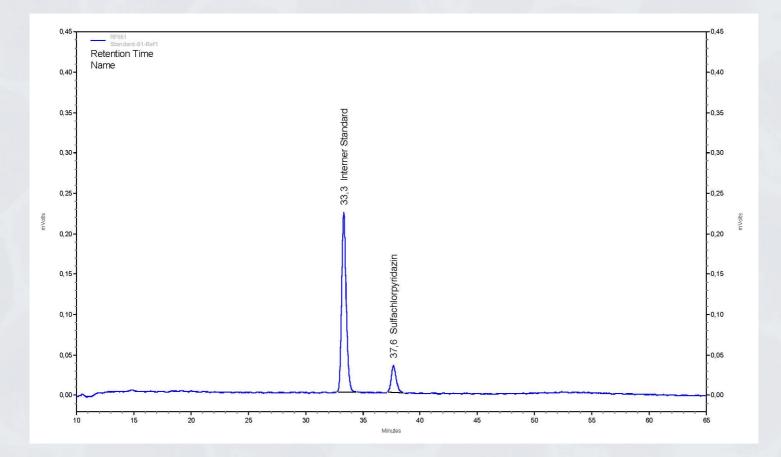
Control point: 2806 cmp \rightarrow value > 2806 cpm = negative Charm II result value < 2806 cpm = positive Charm II result

Sulfonamides in Honey

blue: Sample No. 294

black: Standard, 12 Sulfonamides 50 µg/kg

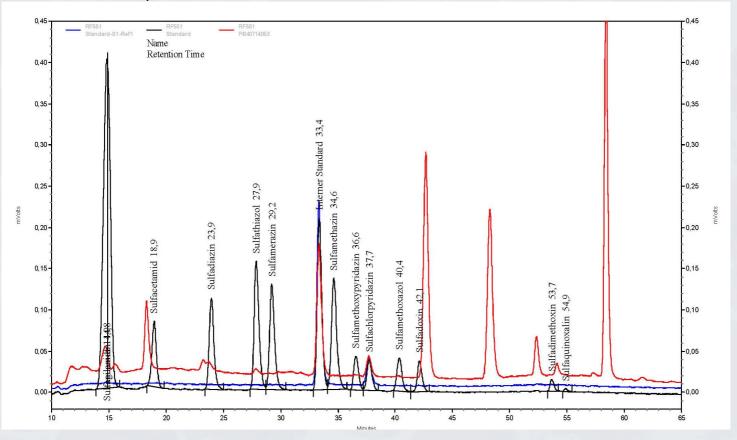

Cooperation between Laboratories: Sulfochloropyridazine

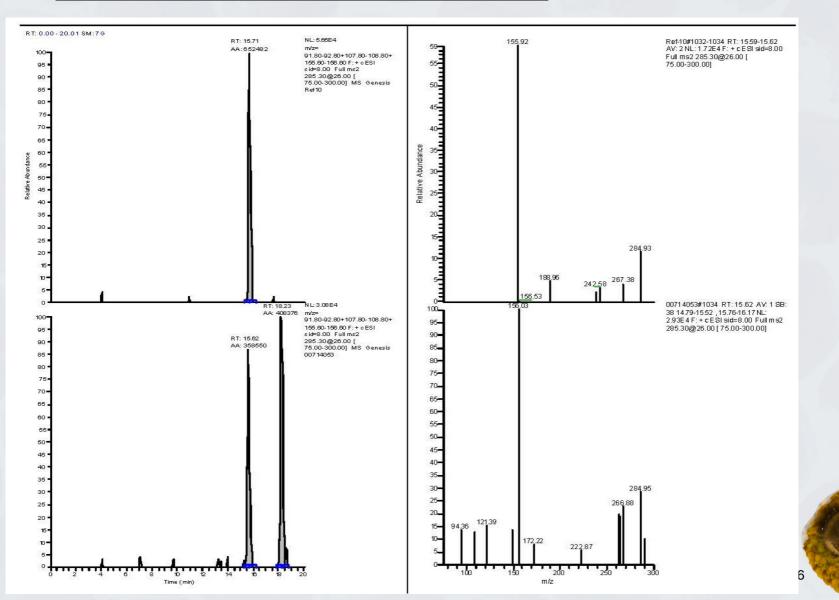

Charm II - suspicion of sulfochloropyridazine

Confirmation with LC-MS/MS - positive

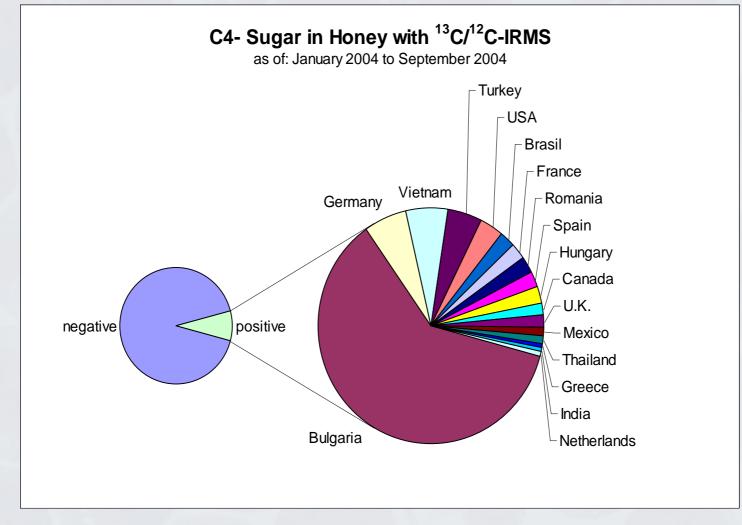
Addition of sulfochloropyridazine to the group of sulfonamides for routine analysis by LC !

Sulfonamides in Honey




Sulfonamides in Honey

- blue: Standard, Sulfochloropyridazine 50 µg/kg
- black: Standard, 13 Sulfonamides


red: Sample No. 294

LC/MS of Sulfochlorpyridazine - Sample No. 294

Cooperation between Customers and Laboratories: Creation of a MAP for Residues in Honey

CFI - International Seminar in Rafaela, Argentina - September/October 2004

Slide No. 32 of 36

PPLICA

Cross-sectoral Cooperation: How to ensure quality

- Quality as the primary target for reliable analytics
- Producing reproducible results by proper sample preparation
- Using state-of-the-art technical equipment for testing
- Determining officially accepted methods and limit values
- Ensuring cross-border comparability of results
- Precondition for competent and experienced laboratories to get accredited by official bodies and institutes
- Harmonising different legislations in different countries and fixing internationally acceptable quality standards
- Setting action levels and evolving flexible quick-action strategies and procedures for covering new demands in the vast field of honey analytics in an ever changing environment
- Establishing a Rapid Alert System (RAS) for new and important findings

Cross-sectoral Cooperation: How to enhance enforcement

- Preparing the ground for creating a keen sense of importance of food safety in the official corridors of power on a local, state, national and international level
- Participating in a brisk and open-minded exchange of relevant news, views and ideas between industry, laboratories and authorities
- Giving Public Relations a more prominent role to ensure that not only problems but also achievements are communicated in public, thus strengthening our interests from the outside
- Speeding up solutions, agreeing on interpretation of results and making them internationally accepted by all parties involved
- Keeping a closer eye on quality control and adherence to rules and regulations, codes and standards to restore confidence in the product honey

Conclusion and Outlook

Standardisation and Regulation MRL and MRPL **Methods**

Harmonisation to achieve **Internationally Accepted Regulations** Method Description

Sampling

Sample Identification

Manufacturers

Confirmation Method Interlaboratory Tests

Laboratories

My thanks go to:

- You, as the audience, for your attention and your interest shown in my lecture
- The APPLICA cooperation partners and customers
- All my staff members who participated in the elaboration of the analytical results:

